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Genome wide association mapping has become prevalent in the genomic era - the
ability to sequence large amounts of DNA makes it possible to link genetic aberrations with
phenotypic traits. More poignantly, this technology has been co-opted with the express
purpose of identifying genetic loci that are responsible for human disease; in an effort to
both understand the biological factors at work and as a means for risk diagnosis.
Nonetheless, significant challenges - technically, statistically, and conceptually - have
limited the success of this approach. In this report, the common methodology of genome
wide association mapping will be explained, the challenges and shortcomings of this
approach will be addressed, and finally, alternative technologies that hold promise for the
future will be highlighted. While genome wide association studies can contribute to our
understanding of disease mechanisms, their focus on identifying common variants does not
substantially improve our ability to predict individual risk.

Embedded within the genomes of individuals of any population lies inherent
variability. Indeed, variability amongst individuals provides the phenotypic platform for
biological evolution. While this variability is quite apparent amongst humans at the
phenotypic level -- simply take note of the diversity between people you pass on the
sidewalk -- the differences at the genetic level are actually quite subtle. Differences in the
genetic code within a species are mainly the result of single nucleotide polymorphisms

(SNPs). These SNPs comprise the allelic variants that, along with environmental influence,

are responsible for the phenotypic diversity we observe in the human population. SNP



variants that are commonplace are the result of mutations that took place many
generations ago, and spread throughout human genealogy either through genetic drift or
selection. Rare SNPs, on the other hand, have arisen from recent mutations, even some
within the current generation, with little time to spread. These SNPs are also the basis for
genome wide association mapping.

When multiple SNPs occur relatively close to one another, typically distances of 30
kB in the human genomes (1), they predictably segregate together over generations. This
effect is known as linkage disequilibrium (LD), where an individual that carries a SNP allele
at one site usually carries other specific alleles at nearby SNP locations. A particular
combination of SNPs along a chromosome is considered a haplotype. Because the human
genome is approximately 3x10°long, and due to the haplotype nature of chromosomes, one
could survey the genetic variability in a genome by simply genotyping 100,000 carefully
selected SNPs across the genome (2). In essence, the principle of a genome wide
association study is to correlate these specific SNPs, and their associated haplotypes or
genes, with diseases by comparing the genomes of afflicted and control individuals. The
stages of a genome wide association study can be broken down into five major steps: (1)
experimental design, (2) genotyping and cleaning of SNP information, (3) statistical
association between SNPs and phenotype, (4) independent replication, and finally, (5)
linkage of SNPs to casual disease genes.

The initial stage of a genome wide association study is critical to the success of the
research endeavor, as careful planning of the study components can increase the chance of

finding significant results. First of all, the phenotype for investigation must be well defined,



so that discrete populations can be compared, and easily measured. The chosen phenotype

can have large impacts on the power of the study, as the outcome (defining SNPs and then
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associated genes) can depend on the effect of genetic variation to the disease or phenotype
of interest. Choosing the test population(s) is also an important factor. The standard
approach is to have case and comparison subjects from a common population. Using
samples from distinct populations, say Africa versus North America, could introduce
population substructure that may produce irregularities in the association between SNPs
and phenotypes. Sample size is another consideration; in association studies a greater
number of samples can produce a more robust linkage between SNPs and phenotypes,
however, there is a technical limit to the number included because of physical and logistical
constraints. Generally, participants are preferred in the thousands, as opposed to the
hundreds (4), but the acquisition and organization of that many samples is challenging.
Finally, the library of SNPs to be tested is chosen. Human SNPs can be genotyped using a
chip platform, whereby sequence probes that contain different SNPs are hybridized to

digested genomic DNA to assess sequence complementation. SNP-chips are commercially



produced by two major competitors, Illumina and Affymetrix. Depending on the
investigator, different numbers of SNPs can be placed on a chip, but as mentioned
previously, 100K is a good minimum for complete coverage of the genome.

The genotyping and verification process of the genome wide association study is the
actual component of molecular biology in the study. Using the microarray-based SNP-chip
technology, raw hybridization data is computed by measuring the signal produced by
binding with the probes. Algorithms are then used to designate these signals as three
possible genotypes (2 homozygote possibilities, one heterozygote possibility) at any given
SNP. The algorithm used by the Wellcome Trust Case Control Consortium in their
landmark study was called CHIAMO (5), but there is also a standard one supplied by
Affymetrix, called BRLMM. Quality control is a significant issue in genome wide association
studies, due to the high-throughput nature of the SNP-chip assays and data assimilation,
the probability of spurious data increases. This step of the process can be the most
troublesome because of the size of the data sets, and also the most dangerous, because any
oversight can lead to misinterpretation of the results in later steps. Some of the checks
taken to “clean the data” include tests for sample contamination, sample duplication or
swaps, false identification of gentoypes, major deviations from Hardy-Weinberg
equilibrium, and even relatedness between samples (5).

The third step in the process of genome wide association studies is the most
computationally intensive. There are a few different approaches to determine significant
association between SNPs and phenotypes, but the simplest method is a single-point
analysis where the frequency of each allele in cases or controls is compared. This can be

summarized in a simple chi-square statistic that highlights any deviation from the null



expectation (no frequency difference) and calculates a p-value to determine significance (6,
Figure 2). The complexity in the analysis arises from the fact that so many statistical tests
must be completed (100K and above), which precludes a large amount of false positives at
the standard statistical significance level of p < 0.05. For example, if 100K SNPs are tested
in a given study, then by chance alone, 5K would be expected to be significant, a number far
greater than any reasonable estimation of culpable genes. Consequently, a much lower p-
value must be used at this stage of analysis, on the order of 1x10-7 or lower (6). Other
approaches use Bayes’ factors, which assume an a priori probability of association to
calculate a posterior probability of association in place of a p-value (7) or the false-positive
report probability, which uses the observed p-value, the prior probability of association,
and the statistical power of the test to determine if an association is a true positive (8). The
typical representation of SNP associations is a Manhattan plot, where the negative log of
the p-value from the chi-square test is plotted against chromosome position (Figure 2).

The fourth step in a genome wide association step is critical for validating any
findings - independent replication of the association between SNP and disease is necessary
to prove association beyond reasonable doubt. There are two main approaches to
accomplish the step of association validation: (1) exact replication of the study on a
different data set, and (2) fine mapping of the region of interest (9). To date, there are
2091 SNP-trait associations in the catalog of published genome wide association studies
(SNPs > 100K in the study) at a p-value of 1x10-> or less, but only 439 are published at a p-
value of 1x108 or less (10). As mentioned earlier, such a high p-value like 1x10-> is
susceptible to false-positive associations, and therefore, supplementary confirmation is

absolutely necessary.
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Figure 2 (Adapted from 5): Quantile-quantile plots of the distribution of observed test
statistics in a genome-wide association study (a-d), blue line denotes null expectation and
red circles indicate idealized test results of four scenarios. (a) little evidence of association,
(b) inflation of association, indicative of population substructure or relatedness of samples,
(c) excess of strong association, also possibly from population substructure, (d) convincing
evidence of disease association with SNPs. Genome-wide association findings in a
Manhattan plot with respect to genome location, highlighting loci of high association (i).
The first approach mentioned in step four is pretty self-explanatory; one uses the
same SNP-chip platform to facilitate a duplicate study on a different sample population. If a
secondary data set is not readily available, which is often the case because of the large
sample sizes required, the investigator might try the second approach. Fine mapping
entails sequencing the haplotype block where the SNP(s) reside to find a non-redundant set
of polymorphisms that can be used to duplicate the association. To accomplish this task,
one can retrieve a common SNP set from the HapMap database (11), or if their region of

interest is underrepresented (the HapMap database only contains about 30% of the

common SNPs present in the genome (9)) they can sequence the region of interest from a



large sample of the population to uncover a novel set of SNPs in that area. This option is
becoming easier with the increased accessibility to improved sequencing technologies.
This step can also be instrumental in narrowing down region of the genome that holds the
strongest association with the disease of interest, a process that will be informative for the
final step.

The last step is the most biologically relevant: making a connection between the SNP
region and the gene(s) that increase the risk of disease. Seeking the culprit loci may inform
the scientific community of a biological mechanism for the disease, which in turn, could
lead to putative therapeutics. This step can often be bypassed if the lone goal of the study
is to seek genetic fingerprints that increase the risk of disease, which basically creates a
means of screening for those susceptible. However, most studies take interest in the
underlying mechanism and will pursue a casual relationship. Nonetheless, if the effect size
of the SNP is small, it may be very difficult to conclude what variant is responsible. Two
major approaches are used in dissecting the SNP of interest, one is computational and the
other is experimental. Computational analysis of the base change can lead to functional
characterization, for instance: a new base may impair a known binding site in the protein,
may alter a crucial folding motif, or change the binding of regulatory partners at a
transcriptional or protein level. If the region where the SNP resides does not have
thoroughly annotated genes, efforts could be directed to uncover the functional aspects by
sequence comparison with protein and motif databases like MyHits motif scan or BLOCKS+.
In an experimental light, perturbation of the genes of interest could introduce pathologies
in cell culture that lead to disease. Techniques such as RNAi or over-expression would be

feasible in this regard. Ultimately, finding the mechanisms of disease is the overarching



goal of biomedical research. Genome wide association studies are a useful tool for
narrowing in on the responsible components (12), but monumental effort in subsequent
studies is absolutely necessary for defining a model of disease.

Throughout the explanation of the methodology for genome wide association
studies, I have tried to highlight challenges and shortcomings, as they are apparent in each
stage. At this point, a more general discussion of the limitations of genome wide
association studies is appropriate. The most glaring weakness of these studies is the use of
common SNP variants for which disease associations are tested (13). Inherent in the fact
that these SNPs are common in the human population, one can intuitively come to the
conclusion that they should have relatively small effect on causing the disease. Indeed, if
these common SNPs had large effects, then many more people would be suffering the ill
affects. An example is illustrated in Goldstein’s review (Figure 3), which shows that even
the strongest associated SNP with type 2 diabetes increases the sibling relative risk to only
1.02, when the overall risk to siblings of affected individuals is three times that. The
relative risk is reported in an odds ratio, where the value is calculated as the odds of an all-

Figure 3 (adapted from 13):
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ele in cases divided by the odds of the allele in controls. An odds ratio of 1 indicates there
is no difference in allele frequency between cases and controls. The odds ratio for most
genetic variants fall in the 1.2-1.3 range or lower, while a few sterling examples may get
between 3 and 4 (14). As a result, the power of using genome wide association studies, and
their associated SNPs, in order to assess the genetic risk of individuals to disease is very
small. Consequently, the possibility of using common SNPs as a diagnostic tool is very
unlikely.

In contrast to the negative outlook of prediction power, proponents of genome wide
association studies (14) praise their capability for finding insightful pathway components
or uncovering new mechanisms that were not previously considered. While this is a
meaningful endeavor, as I previously lauded, the translation from insightful component
pieces to actual therapeutics is a long and difficult road. First off, association studies are
effective in identifying general loci, not actual casual genes. If the SNP resides in a known
expressed gene, then the relationship might be more apparent. However, SNPs are often
located in non-coding regions and the culprit gene(s) need be sought in the surrounding
genome. From an evolutionary perspective, the lack of strong, common variants in
expressed genes makes sense; one should expect that such variants be selected against in
the population. The area surrounding an intergenic SNP can be quite large depending on
the number of SNPs used in the study, which complicates the identification process and
requires further experimentation through in vitro or in silico means. Once the candidate
gene(s) have been identified, however, the toughest task still remains. In fact, critical
proteins and genes are already known to function in countless disease models, but realizing

that potential in a functional therapeutic is another story. As Goldstein pointed out:



“nearly a century and three Nobel Prizes separate the determination of the chemical
composition of cholesterol from the development of statins” (13). With the vast
improvement in recent years of sequencing technology and computational power, the
potential for studies to uncover quantitative players in disease pathology has increased
tremendously. However, the onus, and to most extent, the limiting factor, still remains in
the laboratory.

The realization that common SNPs are contributing very small amounts to disease
formation leaves an unquenchable thirst to uncover more powerful genetic components.
The source of such critical players in disease might be the exact variants that genome wide
association studies overlook - rare variants. Rare variants that exist in the population at
frequencies below 5% (cut-off for common variants in genome wide studies is 5% and
above) that are related to disease causation could have significant impacts on both
prediction of relative risk and understanding mechanism. If these rare variants impart a
substantial increase in risk, say for example, an odds ratio of 5, they would allow the
medical community to diagnose those individual who are highly susceptible. From an
evolutionary perspective, one should expect that rare variants with large effects can subsist
in the population because of their rare nature, often hidden in heterogeneity. The caveat,
however, is obvious; the percentage of people diagnosed with the risk would be
substantially reduced when compared with using common variants because so few people
have the rare variant. Nonetheless, it offers a promising approach to improve the power of
genome wide association studies. From a mechanistic viewpoint, discovering a potent
modulator of the normal biological pathway would ease the difficulty in determining

causation. The variant could highlight a critical regulation point, an important hub in cell



signaling, or a novel component of the disease pathology. Targeting that process would
take guesswork out of drug development, although the challenge of producing the
therapeutic would still remain.

Hopefully, the technology to tackle rare variants is not far off. Some possible
avenues include the expansion of the genome wide association study to include more SNPs
per chip, of which, some SNPs will be below the 5% threshold. One could also create a chip
with only SNPs that ostensibly exist in low frequencies of the population. Alternatively,
investigators could use the location of defined common variants to direct focused
resequencing efforts in the region of interest. Committed sequencing of afflicted
individuals could uncover more powerful rare variants that were not exposed in the
previous genome wide scan. Finally, the last approach to propose has the most potential,
but is also the most technically challenging. Dedicated full genome sequencing in case vs.
control studies. This would require enormous capabilities on three fronts: high throughput
sequencing, statistical comparisons at each base pair, and computationally intensive
analysis. I will concede that this final approach is a daunting proposition, but it may be the
future of biomedical research once technology catches up with our imagination.

Genome wide association mapping has made great strides in the post-genomic era
of utilizing the potential of sequence analysis to uncover biological culprits of disease.
Limitations notwithstanding, the success of such studies depends on the thorough quality
control of sequence data and significant associations, and the utilization of computer
technologies to facilitate analysis. Genome wide association studies can truly reveal
mysteries in disease pathology, but the predictive power of such associations still remains

an elusive trick.
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